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Abstract 

Acute Myeloid Leukaemia (AML) is a haematological malignancy showing a hypervariable landscape of clinical 
outcomes and phenotypic differences, explainable by heterogeneity at the cellular and molecular level. Among the 
most common genomic alterations, CBFB-MYH11 rearrangement and FLT3-ITD gene mutations, have opposite clinical 
significance and are unfrequently associated. We present here a Molecular Case Report in which these two events 
co-exist an ultra-aggressive phenotype resulting in death in 4 days from hospital admittance. Somatic and germline 
Whole Exome Sequencing analysis was performed to uncover other putative driver mutations, de-novo genomic 
structural events or germline clusters increasing cancer insurgence. Only three mutations in LTK, BCAS2 and LGAS9 
were found, unlikely causative of the exhibited phenotype, prompting to additional investigation of the rare CBFB-
MYH11/ FLT3-ITD scenario.
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Background
Acute Myeloid Leukaemia (AML) is a heterogeneous 
disease characterized by clonal expansion of undifferen-
tiated myeloid precursors with variable phenotype and 
relevant molecular differences. This heterogeneity, cou-
pled with the high relapse rate is responsible for the rel-
atively low five-year overall survival (OS) for childhood 
AML, which lays at around 70%, compared to 90% for 
the more common acute lymphoblastic leukaemia [1, 2]. 
Indeed, over 30% of patients achieving complete remis-
sion (CR) after intensive chemotherapy develop relapses 

which are usually drug-resistant, with significant worsen-
ing of prognosis [1, 3].

Nowadays, the evolution of sequencing technologies 
allows for a genomic-based differential diagnosis for this 
form of cancer, with the identification of key mutations 
as new criteria to distinguish different forms of AML, 
granting more accurate prognostication [4], and the 
development of new, specific pharmacologic treatments 
[5]. Nonetheless, our understanding of the synergies of 
concurrent genomic alterations is still incomplete. Most 
patients are screened for the presence of known genomic 
anomalies only, without accounting for the role of co-
occurrences in driving development of resistance, and 
epigenetic reprogramming of cancer clones is not well 
established [6].

In this article, we present the unusual case of early 
death in a child with a FLT3-ITD positive CBFB-MYH11 
rearranged AML, characterized by trio-filtered Whole 
Exome Sequencing (WES) analysis, and a comparison 
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to available published data, to foster the identification of 
molecular determinants of disease aggressiveness in this 
case.

Methods
All samples were equally treated for gDNA extraction 
from PBMCs using QIAamp DNA Mini Kit (Qiagen). 
The quantity and quality of the DNA was assessed by 
the Qubit and by NanoDrop Spectrophotometer, respec-
tively. DNA exome libraries for sequencing were gener-
ated using 150 ng of DNA according to the TruSeq DNA 
Exome kit (Illumina). Quality of the libraries has been 
verified with the Bioanalyzer (High Sensitivity DNA Kit); 
library quantity has been determined with qPCR. The 
samples have then been sequenced in paired-end mode, 
sequencing from each side 76  bp with NextSeq 500 
(Illumina).

Somatic and Germline variants were called via the Dra-
gen Somatic/Germline pipelines available on the Illumina 
Basespace Cloud (vv. 3.6.3). VCF files were downloaded, 
normalized and decomposed via the VT package (Tan 
et  al., 2015) and intersected via custom R scripting. A 
final manual curation was performed to validate called 
somatic SNPs. Copy Number Variations were called via 
the CNVkit package (Talevich et  al. 2014) batch algo-
rithm. CNV baseline was established with all the avail-
able in-house data sequenced (N = 8) with the same 
library preparation kit in order to smooth out technical 
biases. Only CNVs with significant p value (< 1e−10) 
and a strong effect on deletion (CN ≤ 1) or amplifica-
tion (CN ≥ 4) were considered. Structural Variations 
were computed with Manta (Chen et  al. 2016), exclud-
ing events flagged as imprecise and other events that 
were exceeding the insert size length according to 75 bp 
read length. One section of our results is partially based 
upon data generated by the Therapeutically Applicable 
Research to Generate Effective Treatments initiative, 
phs000218. The data used for this analysis are available at 
https:// portal. gdc. cancer. gov/ proje cts.

Results
A fourteen-year-old female, with no previous history of 
diseases, was hospitalized after referral from the general 
practitioner, presenting worsening nausea and fever, and 
ocular hyposphagma. Upon reaching the hospital (day 1) 
she developed dyspnoea and peripheral blood (PB) tests 
showed 364 ×  109/L white blood cells (WBC, normal 
values: 4–12 ×  109/L), prompting AML diagnosis. Cyta-
rabine was started as continuous infusion, 150  mg IV 
every twelve hours, followed by Idarubicin, 10  mg, and 
dexamethasone, 6 mg from day 2. On the same day, the 
patient was moved to the paediatric intensive care unit 
for respiratory failure, eventually needing intubation by 

the end of the day. The patient, now showing hepatosple-
nomegaly and peripheral bleeding manifestations, was 
awake until sedation by administration of midazolam. On 
day 3, patient conditions further worsened, and trans-
fusion support was started, while WBC showed only a 
moderate decrease (215 ×  109/L). On day 4, after multiple 
organ failures (MOF), the patient died due to a mesence-
phalic haemorrhage.

Upon hospitalization, the patient was screened for 
genetic alterations commonly associated with AML, 
detecting both a FLT3-ITD mutation and CBFB-MYH11 
rearrangement. She was negative for RUNX1/RUNX1T1, 
BCR-ABL1, MLL (KMT2A) rearrangements, FLT3-TKD 
and NPM1 mutations. Polymerase chain reaction (PCR) 
analysis of primary cells in accordance with European 
Leukemia Net (ELN) guidelines [7], confirmed the pres-
ence of a FLT3-ITD (Internal Tandem Duplication) with 
an Allelic Ratio (AR) of 0.15. Sequencing of the gene 
showed a 7 bp insertion in the juxta membrane domain 
of FLT3, associated with a 62  bp tandem duplication 
spanning to the TK Domain 1. Analysis of karyotype con-
firmed an inv(16). The association of FLT3-ITD muta-
tions with inv(16) is a rare event in the AML landscape 
[8], and given the aggressive disease onset and the rapid 
fatal outcome, we decided to characterize in depth the 
genomic features of this AML case.

This study was approved by the Regina Elena Ethics 
Committee (CE 1353/20). Written informed consent was 
collected from the parents before blood sampling, on 
behalf of their child for the publication of any potentially 
identifiable data included in this article, and clinical data 
were collected from the patient chart and her parents.

Whole Exome Sequencing (WES) was performed on 
blast cells. In absence of a germline sample, PB Mono-
nuclear Cells (PBMCs) samples were obtained from 
both parents to perform a family trio analysis of genetic 
variants, in order to achieve higher sensitivity and ease 
of data filtering compared to patient WES alone [9]. The 
methods are presented visually in Fig. 1 and expanded in 
the supplementary section. After filtering variants shared 
with the parents, only two potentially relevant Single 
Nucleotide Variants (SNVs) were identified, presented in 
Table 1.

Analysis of gene Copy Number Variations (CNVs) 
revealed a focal shallow deletion (CN = 1) on the 
TUBB8B gene, and two shallow larger events on chr4 
and chr17. Other two large deletions were discarded 
since overlapping the validated inversion on chr16. 
When considering significant amplifications with a 
strong signal (CN ≥ 4), only one event emerged, pre-
sented in Table 1. A further analysis on other genomic 
structural events such as translocations, insertions, 
and inversions, was performed: of the four alterations 

https://portal.gdc.cancer.gov/projects
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Fig. 1 Workflow of the case molecular investigation. In order to apply a Trio analysis, peripheral blood samples from both the patient (proband, 
F) and the parents (P1, P2) were collected. After isolation, mononuclear cells were lysed, then DNA was extracted and purified to perform Whole 
Exome Sequencing. Resulting data has been analysed exploiting Illumina tools and other software, coupled with custom R scripts. This allowed the 
selection of relevant anomalies, which were then manually screened
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detected, one was excluded via further manual filtering 
(imprecise breakpoints). The three remaining insertions 
on chr3, chr9 and chr20 were not considered since they 
exceeded the software length threshold for insert size.

We then assessed the prevalence of concurrent FLT3-
ITD and CBFB-MYH11 across several patient cohorts 
exploiting the cBioPortal [10]interface. The overall pop-
ulation of double-mutant is comprising of 5 patients 
(0.5%) in the TARGET study and 2 patients (1%) in 
the TCGA study, in agreement with previously pub-
lished data [11–15]. Interestingly, none of the muta-
tions described in Table  1 could be observed in the 
somatic landscape of the double-mutated population. 
Furthermore, when querying for mutational events 
(SNPs, Indels, and CNVs) on LTK, BCAS2, LGASL2, 
and TUBB8B, the amount of somatic point mutations 
was none on said patients, while only 2 Copy Number 
Amplifications in BCAS2 and 1 in LTK were found. 
Taken together, these results could point out to a 
molecular background that acts in a sinergistic manner 
with the FLT3-ITD + CBFB-MYH11 combination.

We then sought to provide an overview of the prog-
nostic value of all these variants on Overall Survival, 
while unfortunately such scarce numerosity of events 
prevents reaching statistical significance. Nonethe-
less, Overall Survival on all considered datasets sug-
gests that these patients have worse prospects and a 
higher chance of relapse, especially in the paediatric 
population,

The median survival was 17  months on the 7 com-
bined cases, against a median OS of 34.5 for FLT3-only, 
59 for CBFB-MYH11 only and 47 for none of these 
events (Additional file 1: Fig. S1A).

Finally, blast median count was 61.5, 79.5, 73, 70 on 
the 4 groups, confirming the double mutant scenario 
not be the sole hallmark of hyperleukocytosis (Addi-
tional file 1: Fig. S1B).

Conclusions
To usher the era of precision medicine, a detailed under-
standing of the significance of genetic alterations is 
required. Indeed, not only their presence but also the 
interaction between the different genetic abnormali-
ties, should be considered to explain the variability in 
response to treatment observed in patients.

The category of core binding factor (CBF) acute mye-
loid leukaemias (AMLs) includes AML with inv(16)
(p13.1q22) and AML with t(8;21) (q22;q22,1), which 
translates into CBFβ/MYH11 and RUNX1/RUNX1T1 
fusion genes, respectively [16]. These abnormalities have 
an incidence of 10–15% in adults and 20% in childhood 
de novo AMLs, and they are considered prognostically 
favourable [7, 16, 17]. The presence of CBF-AML chi-
meric transcripts causes disruption of the CBF complex 
with consequent block of differentiation of myeloid blasts 
[16]. However, several evidences suggest that the leuke-
mogenesis process is more complex and could be sup-
ported by additional mutational events [18]. In 2002, 
Kelly et al. proposed a two-hit model for CBF leukaemia 
in which the proliferative advantage was conferred by 
a mutation in a gene coding for a tyrosine kinase [19]. 
The detection of an additional mutation in CBF-AMLs 
dates back to 2003, when Care et  al. demonstrated that 
mutations of c-Kit or FLT3 genes could be found in 40% 
of AML with CBFβ/MYH11 cases [20]. Otherwise, sub-
sequent studies reported the co-existence of a mutually 

Table 1 Description of the AML-only mutations filtered via trio Whole-Exome Sequencing. Public Database annotations are provided 
for each mutation along with a brief literature background

GENE Mutation Annotation Functional impact Reference

LTK Missense SNV:
Ch15: 41,803,754
p. P227L
680C > T
VAF:0.57
COSM3749294,
COSM3749295
rs55739813

SIFT:0
Polyphen:1

Leukocyte tyrosine kinase, often overexpressed in leukaemia, unknown ligand [35]

BCAS2 Missense SNV
Ch1: 115,118,313
p.C106Y
317G > A
VAF:0.47

SIFT:0
Polyphen:0,98

Encodes pre-mRNA splicing factor SPF27, probable oncogenic role in breast 
cancer, possible role in haematopoiesis (known role in zebrafish)

[36]

LGALS9 CNV up (cn = 4)
Ch17: 18,380,138–18,397,683
Depth: 537,146

N/A TIM3 ligand, soluble cytokine. Promotes apoptotic pathways, confers immune 
avoidance, promotes hypoxia coping mechanisms; pathways are not currently 
known

[37]
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exclusive mutational process for activating tyrosine 
kinases pathway in up to 70% of CBF-AML cases [21, 22].

FLT3 mutations can be subdivided into internal tan-
dem duplicates (ITD) that are in-frame duplications of 
variable size located within the juxatamembrane domain, 
and point mutations in the tyrosine kinase domain 
(TKD). FLT3-TKD mutations are observed in 11–13% 
of AMLs with CBFβ/MYH11, and they do not seem to 
affect prognosis [23–25], and in the paediatric population 
only anecdotal cases are reported [26]. FLT3-ITD muta-
tions are even more rare in CBFβ/MYH11 AMLs, with an 
incidence of 3 to 8%, and their prognostic role is nega-
tive. A mouse model study reported aggressive behaviour, 
low platelet counts and rapid peripheral dissemination of 
blasts [27]. Moreover, a retrospective collection of cases 
described poorer outcome of adult patients, as compared 
to those with CBF-AMLs without FLT3-ITD mutations. 
In literature, no data is available on FLT3-ITD-positive 
CBF-AMLs in paediatric population [28]. The presence 
of FLT3-ITD mutations confers to leukemic cells a prolif-
erative and survival advantage by constitutive activation 
of downstream signalling events involving PI3K/AKT/
mTOR, MEK/ERK and STAT5 pathways [29]. Conse-
quently, these mutations correlate with hyperleukocyto-
sis and poor prognosis [30–32].

Our patient presented at onset with all the biologi-
cal features described above, including hyperleukocyto-
sis, which is a known independent prognostic factor for 
inferior outcome, poor response to therapy and aggres-
sive course of the disease [33]. It remains to be clarified 
whether a FLT3-ITD double mutation may have contrib-
uted to enhancing the unfavourable features known to 
be associated with a single mutation in this gene. Only 
another case of a 54-year-old patient with a de novo 
AML with FLT3-ITD double mutation is reported in 
the literature, with a particularly aggressive course and 
adverse outcome [34].

In conclusion, we reported the unique molecular profile 
of a paediatric patient affected by a CBFβ/MYH11 AML, 
carrier of two FLT3-ITD co-mutations. Even though the 
genetic features would classify this AML as favourable 
risk, according to the 2017 ELN risk-stratification [7], the 
course of the disease was unusually rapid and fatal. This 
could be partly explained by the high leukocyte count 
at presentation. Further studies are needed to assess the 
clinical significance of a FLT3-ITD double mutations and 
clarify their prognostic features in CBF-AMLs.
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